

Fig. 3. View of (II) along **b** showing molecular packing and hydrogen bonding.

between the bonds and angles in the two molecules at a significance level of  $3\sigma$ . There are minor differences in the comparative values of some of the torsion angles in the two molecules.\* However, the following conformational details apply to both molecules. Ring A is planar within experimental error as is the enol side chain. Rings B and C have chair conformations. Ring

D is a C(13) envelope. The ring junctions A/B, B/C, C/D are all *trans*. These structures are in all respects very similar to that of the closely related dexamethasone acetate (Terzis & Theophanides, 1975).

Hydrogen bonding: (I): O(3)...O(17)( $-x,y+\frac{1}{2},-z$ ), 2.77 (2) Å; (II): O(3)...O(17)( $-x,y-\frac{1}{2},-z$ ), 2.75 (2), O(3)...O(11)(x,y,z-1), 2.82 (2) Å. Figs. 2 and 3 show the hydrogen bonding and molecular packing of compounds (I) and (II) respectively.

### References

- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- ROBERTS, P. & SHELDRICK, G. M. (1975). XANADU. Program for torsion-angle, mean-plane, and libration-correction calculations. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- TERZIS, A. & THEOPHANIDES, T. (1975). Acta Cryst. B31, 796-801.

Acta Cryst. (1985). C41, 441-443

# Anthranilic Acid I, $*C_7H_7NO_2$ , by Neutron Diffraction

BY C. J. BROWN AND M. EHRENBERG

Department of Metallurgy and Materials Engineering, City of London Polytechnic, Central House, Whitechapel High Street, London E1 7PF, England

(Received 6 February 1984; accepted 5 November 1984)

Abstract.  $M_r = 137.14$ , orthorhombic,  $P2_1cn$  (nonstandard setting of  $Pna2_1$ , a = 12.864 (2), b =10.790 (2), c = 9.314 (1) Å, V = 1292.81 Å<sup>3</sup>, Z = 8,  $D_m = 1.405$  (1),  $D_x = 1.409$  Mg m<sup>-3</sup>,  $\lambda = 1.168$  Å,  $\mu$  $= 0.17 \text{ mm}^{-1}$ , F(000) = 576, T = 293 K, R = 0.048for 1207 observed  $[I > \sigma(I)]$  reflexions. There are two molecules per asymmetric unit, one is neutral and the other a zwitterion  $C_6H_4$ .NH<sup>+</sup><sub>3</sub>.COO<sup>-</sup>, confirming the X-ray results [Brown (1968). Proc. R. Soc. London Ser. A, 302, 185–199] with significant differences in the C-N and C-O bond lengths in the two molecules. The molecules are linked three-dimensionally in the crystal by a set of six hydrogen bonds of lengths 2.497 (7)-2.894 (6) Å. The H-atom parameters have been refined, giving O-H 1.039 (12), mean C-H 1.081 (11) and mean N-H 1.048 (9) Å.

\* 2-Aminobenzoic acid, low-temperature form.

0108-2701/85/030441-03\$01.50

**Introduction.** The structure of the title compound has already been determined by X-rays (Brown, 1968), and this work was undertaken principally to confirm the suggested positions of the H atoms which had indicated the novel coexistence of neutral molecules and zwitterions in the same crystal.

**Experimental.** Large brown triangular crystals approx.  $5 \times 6 \times 3$  mm from cold ethanol. Density by flotation in NaI solution. Lattice parameters from 20 high-angle reflexions on a 57.3 mm radius camera. Intensities on a modified Hilger & Watts diffractometer at UKAEA, Harwell, 1207 reflexions observed out of 1264 counted. Corrections for Lp and absorption, transmission factors between 50 and 100% based on calculated path length. Empirical extinction for seven strong reflexions during refinement. Two standard reflexions, no variation other than that due to changes in neutron beam flux (< 5%).

© 1985 International Union of Crystallography

<sup>\*</sup> See deposition footnote.

## Table 1. Final atomic parameters and e.s.d.'s

| $B_{\rm eq} = \frac{4}{3} [(\beta_{11}/a^{*2}) + (\beta_{22}/b^{*2}) + (\beta_{33}/c^{*2})].$ |             |              |              |                     |  |  |
|-----------------------------------------------------------------------------------------------|-------------|--------------|--------------|---------------------|--|--|
|                                                                                               | x           | у            | Z            | $B_{eq}(\dot{A}^2)$ |  |  |
| Molecule 'A'                                                                                  |             |              |              |                     |  |  |
| C(1)                                                                                          | 0.1358      | 0.0873(3)    | 0.2036 (3)   | 2.33 (5)            |  |  |
| C(2)                                                                                          | 0.1690(3)   | 0.0452 (4)   | 0.3398(4)    | 3.22 (6)            |  |  |
| C(3)                                                                                          | 0.1656(3)   | -0.0824(4)   | 0.3752(3)    | 3.34 (6)            |  |  |
| C(4)                                                                                          | 0.1329(3)   | -0.1699(3)   | 0.2696 (4)   | 2.69 (5)            |  |  |
| C(5)                                                                                          | 0-1015 (3)  | -0-1276 (3)  | 0-1396 (4)   | 2.37 (5)            |  |  |
| C(6)                                                                                          | 0.1013 (3)  | -0.0013(3)   | 0.1023(3)    | 1.98 (4)            |  |  |
| C(7)                                                                                          | 0.0609 (3)  | 0.0367 (3)   | -0.0410(3)   | 2.07 (4)            |  |  |
| N(1)                                                                                          | 0.1411(2)   | 0.2135 (2)   | 0.1767 (2)   | 2.79 (4)            |  |  |
| O(1)                                                                                          | 0.0681 (5)  | 0.1431 (4)   | -0.0808(5)   | 3.85 (7)            |  |  |
| O(2)                                                                                          | 0.0234 (4)  | -0.0498 (4)  | -0.1228 (4)  | 3.31 (6)            |  |  |
| H(2) C(2)                                                                                     | 0.1897 (10) | 0.1054 (13)  | 0-4133 (14)  | 6.39 (21            |  |  |
| H(3) C(3)                                                                                     | 0.1899 (11) | -0.1068 (15) | 0.4816 (12)  | 6.87 (21            |  |  |
| H(4) C(4)                                                                                     | 0.1282 (10) | -0.2620 (8)  | 0.2993 (11)  | 4.04 (16            |  |  |
| H(5) C(5)                                                                                     | 0.0736(7)   | -0·1976 (7)  | 0.0607 (9)   | 4.04 (12            |  |  |
| H(6) N(1)                                                                                     | 0.1000 (8)  | 0.2379 (9)   | 0.0823 (8)   | 4.28 (14            |  |  |
| H(7)[N(1)]                                                                                    | 0-1142 (7)  | 0.2624 (7)   | 0-2631 (7)   | 3-82 (11            |  |  |
| H(8) O(2)                                                                                     | -0.0005 (8) | _0·0160 (7)  | -0.2219 (10) | 4.46 (14            |  |  |
| Molecule 'B'                                                                                  |             |              |              |                     |  |  |
| C(11)                                                                                         | 0.3609(2)   | 0.4176(2)    | 0.2022(3)    | 1.80 (4)            |  |  |
| C(12)                                                                                         | 0.3274(2)   | 0.4626 (3)   | 0.3348(3)    | 2.20 (4)            |  |  |
| C(13)                                                                                         | 0.3305(3)   | 0.5872 (3)   | 0.3607 (4)   | 2-83 (5)            |  |  |
| C(14)                                                                                         | 0.3701 (3)  | 0.6684(3)    | 0.2581 (4)   | 2.86 (5)            |  |  |
| C(15)                                                                                         | 0.4021 (3)  | 0.6226 (3)   | 0.1261 (3)   | 2.32 (5)            |  |  |
| C(16)                                                                                         | 0.3968 (2)  | 0.4952 (2)   | 0.0965 (3)   | 1.75 (4)            |  |  |
| C(17)                                                                                         | 0.4296 (2)  | 0.4505 (2)   | -0.0483 (2)  | 1.82 (4)            |  |  |
| N(11)                                                                                         | 0.3563 (2)  | 0.2844 (2)   | 0.1783 (2)   | 2.44 (3)            |  |  |
| O(11)                                                                                         | 0.4241 (3)  | 0.3360 (3)   | -0.0778 (3)  | 2.43 (5)            |  |  |
| O(12)                                                                                         | 0-4646 (4)  | 0.5302 (4)   | -0.1392 (4)  | 3.58(7)             |  |  |
| H(12) C(12)                                                                                   | 0.2978 (9)  | 0.3992 (6)   | 0.4162 (7)   | 4.19(11             |  |  |
| H(13)[C(13)]                                                                                  | 0.3055 (9)  | 0.6322 (9)   | 0.4675 (8)   | 5.16 (14            |  |  |
| H(14)[C(14)]                                                                                  | 0-3717 (9)  | 0-7723 (9)   | 0.2792 (11)  | 5-16(16             |  |  |
| H(15) C(15)                                                                                   | 0-4268 (7)  | 0.6835(7)    | 0.0421 (7)   | 4.00(12             |  |  |
| H(16)[N(11)]                                                                                  | 0-3888 (6)  | 0.2682 (5)   | 0.0778 (8)   | 3.03 (10            |  |  |
| H(17)[N(11)]                                                                                  | 0-3910(7)   | 0-2331 (8)   | 0.2611 (10)  | 4.23 (14            |  |  |
| H(18)N(11)                                                                                    | 0.2783(7)   | 0.2506 (6)   | 0.1736 (8)   | 3.82 (12            |  |  |

C(4) )(12) C(5) C(7 O(2)а

Index range  $h \ 0-15$ ,  $k \ 0-13$ ,  $l \ 0-11$ .  $\theta_{max} = 45^{\circ}$ . Structure previously solved from X-ray data. Refinement by least squares on F commencing with X-ray results using NRC programs (Ahmed, Hall, Pippy & Huber, 1970) on the London Polytechnic's ICL 1905E computer.  $\beta_{ij}$ refined for all atoms including H with  $\sqrt{w} = 1/F_o$  until shifts were all  $<0.25\sigma$ . Max. values in final difference Fourier map  $< \pm 0.1 \times 10^{-12}$  cm. Scattering crosssections C 6.61, N 9.40, O 5.77, H -3.78 fm (International Tables for X-ray Crystallography, 1962).  $R_{w} = 0.093$ .

Table 2. Bond lengths (Å), bond angles (°) and H-bonding details

| Molecule 'A'       |            | Molecule 'B'          |            |  |  |
|--------------------|------------|-----------------------|------------|--|--|
| C(1)-C(2)          | 1.414 (4)  | C(11) - C(12)         | 1-396 (4)  |  |  |
| C(1) - C(6)        | 1.414(3)   | C(11) - C(16)         | 1.372 (4)  |  |  |
| C(2) C(3)          | 1-416(7)   | C(12) - C(13)         | 1-367(5)   |  |  |
| C(3) C(4)          | 1-427 (6)  | C(13) - C(14)         | 1-393 (6)  |  |  |
| C(4) -C(5)         | 1.356 (5)  | C(14)-C(15)           | 1.388 (5)  |  |  |
| C(5) C(6)          | 1-406 (5)  | C(15)C(16)            | 1.404 (4)  |  |  |
| C(6) C(7)          | 1.490 (4)  | C(16)-C(17)           | 1-493 (4)  |  |  |
| C(7) O(1)          | 1.211 (6)  | C(17)-O(11)           | 1.268 (5)  |  |  |
| C(7) - O(2)        | 1.298 (6)  | C(17)-O(12)           | 1.288 (8)  |  |  |
| C(1)- N(1)         | 1-386 (3)  | C(11)-N(11)           | 1-455 (4)  |  |  |
| C(2) H(2)          | 0.980 (16) | C(12) - H(12)         | 1.090 (9)  |  |  |
| C(3) - H(3)        | 1.072 (14) | C(13)-H(13)           | 1-153 (10) |  |  |
| C(4) H(4)          | 1.033 (10) | C(14) H(14)           | 1-138 (12) |  |  |
| C(5) H(5)          | 1.113 (10) | C(15)-H(15)           | 1.070 (9)  |  |  |
| N(1) H(6)          | 1.059 (9)  | N(11)-H(16)           | 1.039 (8)  |  |  |
| N(1) H(7)          | 1.022 (9)  | N(11)-H(17)           | 1-049 (10) |  |  |
| O(2) H(8)          | 1.039 (12) | N(11)-H(18)           | 1-069 (10) |  |  |
| C(2) - C(1) - C(6) | 118-4 (2)  | C(12)-C(11)-C(16)     | 121-8 (3)  |  |  |
| C(2) C(1) N(1)     | 117.6 (2)  | C(12) - C(11) - N(11) | 117-8 (3)  |  |  |
| C(6) - C(1) - N(1) | 124.0(2)   | C(16) - C(11) - N(11) | 120-4 (3)  |  |  |
| C(1) C(2) - C(3)   | 120.8 (4)  | C(11)-C(12)-C(13)     | 119-3 (3)  |  |  |
| C(1) C(2) H(2)     | 119.7 (9)  | C(11) - C(12) - H(12) | 120-3 (6)  |  |  |
| C(3) C(2) H(2)     | 119-3 (10) | C(13) - C(12) - H(12) | 120-4 (6)  |  |  |
| C(2) C(3) C(4)     | 119-5 (4)  | C(12)-C(13)-C(14)     | 120-6 (4)  |  |  |
| C(2) C(3) H(3)     | 116-5 (9)  | C(12)-C(13) -H(13)    | 123-9 (7)  |  |  |
| C(4) C(3) - H(3)   | 124-0 (9)  | C(14) C(13)-H(13)     | 115-4 (6)  |  |  |
| C(3) C(4) C(5)     | 118-7 (4)  | C(13)-C(14)-C(15)     | 119-5 (4)  |  |  |
| C(3) C(4) H(4)     | 118-0 (7)  | C(13)-C(14)-H(14)     | 120.5 (7)  |  |  |
| C(5) C(4) H(4)     | 123-1 (8)  | C(15)-C(14)-H(14)     | 119-9 (7)  |  |  |
| C(4) C(5) C(6)     | 123-2 (3)  | C(14) C(15) C(16)     | 120-5 (3)  |  |  |
| C(4) C(5) H(5)     | 117-2 (6)  | C(14)C(15)H(15)       | 121-2 (6)  |  |  |
| C(6) C(5) H(5)     | 119-6 (6)  | C(16)-C(15)-H(15)     | 118-2 (6)  |  |  |
| C(5) C(6) -C(7)    | 119-2 (3)  | C(15)-C(16)-C(17)     | 118.7 (3)  |  |  |
| C(5) C(6) C(1)     | 119-4 (3)  | C(15) C(16)-C(11)     | 118-2 (3)  |  |  |
| C(7) C(6) C(1)     | 121-4 (3)  | C(17)-C(16)-C(11)     | 123-1 (3)  |  |  |
| C(6) C(7) O(1)     | 120.6 (4)  | C(16) C(17)-O(11)     | 119-6 (3)  |  |  |
| C(6) C(7) · O(2)   | 117-2 (4)  | C(16)-C(17)-O(12)     | 118-5 (3)  |  |  |
| O(1) C(7) O(2)     | 122-1 (4)  | O(11) · C(17)- O(12)  | 121-9 (4)  |  |  |
| C(1) N(1) H(6)     | 111-6 (6)  | C(11) - N(11) - H(16) | 106.7 (5)  |  |  |
| C(1) N(1) H(7)     | 110-4 (5)  | C(11)- N(11)-H(17)    | 113-0 (6)  |  |  |
| H(6) N(1) H(7)     | 110-9 (8)  | H(16)-N(11)-H(17)     | 113-8 (7)  |  |  |
| C(7) O(2) H(8)     | 112-2 (7)  | C(11) · N(11) - H(18) | 112-4 (5)  |  |  |
|                    |            | H(16) N(11) H(18)     | 106+5 (7)  |  |  |
|                    |            | H(17)–N(11)–H(18)     | 104-4 (7)  |  |  |
|                    |            | C(17)-O(12)-H(8)      | 117-6 (6)  |  |  |

#### Hydrogen bonding

|                                   | Х-Н        | H···A      | $X \cdots A$ | $\angle X - H \cdots A$ |
|-----------------------------------|------------|------------|--------------|-------------------------|
| $X - H \cdots A$                  | (Å)        | (Å)        | (Å)          | (°)                     |
| O(2) H(8) O(12 <sup>i</sup> )     | 1.039 (12) | 1-458 (12) | 2-497 (7)    | 179.1 (1.1)             |
| N(1) H(6)O(1)                     | 1.059 (9)  | 1.876 (10) | 2.686 (6)    | 130-2 (8)               |
| N(1) - H(7) – O(1 <sup>ii</sup> ) | 1.022 (9)  | 1.872 (10) | 2.894 (6)    | 177-9 (8)               |
| N(11)H(18) -N(1)                  | 1.069 (10) | 1.810(10)  | 2.872 (5)    | 172-1 (8)               |
| N(11)-H(16)-O(11)                 | 1.039 (8)  | 1.685 (8)  | 2.599 (6)    | 144.0(7)                |
| N(11) H(17) O(11")                | 1.049 (10) | 1.729 (11) | 2.759 (4)    | 166-0 (9)               |
|                                   |            |            |              |                         |

Fig. 1. Unit cell showing atom numbering and arrangement of molecules. Representative hydrogen bonds are shown by dashed lines.

Symmetry code: (i)  $\frac{1}{2} + x$ ,  $\frac{1}{2} + y$ ,  $\frac{1}{2} - z$ ; (ii) x,  $\frac{1}{2} - y$ ,  $\frac{1}{2} + z$ .

- -

**Discussion.** The final positional and equivalent isotropic thermal parameters are in Table 1,\* and bond lengths and interbond angles in Table 2. The numbering of the atoms and packing arrangement of the molecules showing the H-bond system are in Fig. 1. The phenyl rings of the molecules are effectively planar, r.m.s. displacements of the atoms being 0.011 (4) Å for molecule 'A' and 0.012 (4) Å for molecule 'B'. The carboxyl groups are rotated by +5.38 (5) and +1.71 (5)° respectively from the planes of their rings. The two phenyl rings make an angle of +138.85 (5)°.

Comparison of the neutron and X-ray results shows some quite appreciable differences, which may be due to the lower accuracy of the X-ray intensity data. However, the properties being measured are not the same by the two methods, the centre of gravity of the diffracting electrons by X-rays, and the position of the atomic nucleus by neutrons. Nevertheless, variations of up to 0.07 Å in bond lengths are more than might be expected, and difficult to account for convincingly. A re-determination of the X-ray structure might clarify the discrepancies.

#### References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1970). NRC crystallographic programs for the IBM/360 system. National Research Council, Ottawa, Canada.
- BROWN, C. J. (1968). Proc. R. Soc. London Ser. A, 302, 185-199.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 229. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Acta Cryst. (1985). C41, 443-446

# Refinement of 4-Methyl-5-sulfosalicylic Acid Tetrahydrate, C<sub>8</sub>H<sub>8</sub>O<sub>6</sub>S.4H<sub>2</sub>O\*

### By Torbjörn Gustafsson

Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

(Received 16 January 1984; accepted 9 October 1984)

Abstract.  $M_r = 304 \cdot 27$ , monoclinic,  $P2_1/c$ , a = $\beta =$ 7.425 (1), b = 25.353 (3), c = 8.291 (2) Å, 118.09 (1)°,  $V = 1377 (1) \text{ Å}^3$ , Z = 4, $D_{r} =$  $1.467(1) \text{ Mg m}^{-3}$ .  $\lambda$ (Mo K $\alpha$ ) = 0.71069 Å,  $\mu =$  $0.255 \text{ mm}^{-1}$ , F(000) = 640, T = 295 K. Refinement based on 2860 reflexions gave a final  $wR(F^2)$  value of 0.074. The molecular structure can best be formulated diaquaoxonium as the salt H<sub>7</sub>O<sub>1</sub><sup>+</sup>.CH<sub>3</sub>C<sub>6</sub>H<sub>7</sub>- $COOH(OH)SO_3^-$ . H<sub>2</sub>O. The salicylic acid molecules are linked by hydrogen bonds via the H<sub>2</sub>O molecule and the disordered  $H_7O_3^+$  complex.

**Introduction.** A large number of papers dealing with the geometry of water-proton complexes have been published. The different types of complexes occurring in such systems were identified by Lundgren (1974) and Lundgren & Olovsson (1976). Taesler (1981) showed that the type of complex formed in one specific compound is governed mainly by the water/proton ratio and the type of anion.

The structure of 4-methyl-5-sulfosalicylic acid (4,5-MSSA) (Vyas, Sakore & Biswas, 1978) showed some unexpected features in the water-proton system, both regarding the nature and the geometry of the complex. They described the molecular structure as  $H_7O_3^+$ .  $H_3O^+$ .  $CH_3C_6H_2COO^-$ . (OH)SO\_3^-. One of the internal hydrogen bonds in the  $H_7O_3^+$  ion was 2.40 (3) Å which is 0.1 Å shorter than expected. This could have been caused by an unresolved disorder in the  $H_7O_3^+$  ion are 2.55, 2.81 and 3.00 ( $\sigma \sim 0.03$ ) Å. The expected mean value is 2.57 Å. The structure has been redetermined to clarify these points.

**Experimental.** Crystals obtained by treating 4methylsalicylic acid with conc. sulfuric acid, followed by recrystallization from aqueous solution; crystal  $0.4 \times 0.3 \times 0.1$  mm, in glass capillary. CAD-4 diffractometer with graphite-monochromatized Mo Ka radiation. Cell parameters (significantly different from values of Vyas *et al.*) from 20 reflexions (16 <  $\theta < 19^{\circ}$ ). 2900 reflexions collected for  $\sin\theta/\lambda$  $\leq 0.62$  Å<sup>-1</sup>,  $0 \leq h \leq 9$ ,  $-31 \leq k \leq 0$ ,  $-9 \leq l \leq 9$ , 40 excluded due to overlap. Profiles corrected for background (Lehmann & Larsen, 1974). Variations in five test reflexions were not significant,  $\sigma^2(I_a) = [\sigma_c^2 +$ 

© 1985 International Union of Crystallography

<sup>\*</sup> Lists of structure factors, anisotropic thermal parameters and mean-planes' details have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39884 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

<sup>\*</sup> Hydrogen Bond Studies. 150.