

Fig. 3. View of (II) along b showing molecular packing and hydrogen bonding.
between the bonds and angles in the two molecules at a significance level of 3σ. There are minor differences in the comparative values of some of the torsion angles in the two molecules.* However, the following conformational details apply to both molecules. Ring A is planar within experimental error as is the enol side chain. Rings B and C have chair conformations. Ring

* See deposition footnote.
D is a $C(13)$ envelope. The ring junctions $A / B, B / C$, C / D are all trans. These structures are in all respects very similar to that of the closely related dexamethasone acetate (Terzis \& Theophanides, 1975).

Hydrogen bonding: (I): $\mathrm{O}(3) \cdots \mathrm{O}(17)\left(-x, y+\frac{1}{2},-z\right)$, 2.77 (2) \AA; (II): $\mathrm{O}(3) \cdots \mathrm{O}(17)\left(-x, y-\frac{1}{2},-z\right), 2.75$ (2), $\mathrm{O}(3) \cdots \mathrm{O}(11)(x, y, z-1), 2.82(2) \AA$. Figs. 2 and 3 show the hydrogen bonding and molecular packing of compounds (I) and (II) respectively.

References

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Roberts, P. \& Sheldrick, G. M. (1975). XANADU. Program for torsion-angle, mean-plane, and libration-correction calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Terzis, A. \& Theophanides, T. (1975). Acta Cryst. B31, 796-801.

Acta Cryst. (1985). C41, 441-443

Anthranilic Acid I,* $\mathbf{C}_{7} \mathbf{H}_{7} \mathbf{N O}_{2}$, by Neutron Diffraction

By C. J. Brown and M. Ehrenberg
Department of Metallurgy and Materials Engineering, City of London Polytechnic, Central House, Whitechapel High Street, London E1 7PF, England

(Received 6 February 1984; accepted 5 November 1984)

Abstract

M_{r}=137 \cdot 14\), orthorhombic, $P 2_{1} c n$ (nonstandard setting of Pna 1_{1}), $\quad a=12.864$ (2), $b=$ 10.790 (2), $c=9.314$ (1) $\AA, V=1292.81 \AA^{3}, Z=8$, $D_{m}=1.405(1), D_{x}=1.409 \mathrm{Mg} \mathrm{m}^{-3}, \lambda=1.168 \AA, \mu$ $=0.17 \mathrm{~mm}^{-1}, \quad F(000)=576, T=293 \mathrm{~K}, R=0.048$ for 1207 observed $[I>\sigma(I)]$ reflexions. There are two molecules per asymmetric unit, one is neutral and the other a zwitterion $\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{3}^{+} \cdot \mathrm{COO}^{-}$, confirming the X-ray results [Brown (1968). Proc. R. Soc. London Ser. A, 302, 185-199| with significant differences in the $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bond lengths in the two molecules. The molecules are linked three-dimensionally in the crystal by a set of six hydrogen bonds of lengths 2.497 (7)$2 \cdot 894$ (6) \AA. The H -atom parameters have been refined, giving $\mathrm{O}-\mathrm{H} 1.039$ (12), mean $\mathrm{C}-\mathrm{H} 1.081$ (11) and mean $\mathrm{N}-\mathrm{H} 1.048$ (9) \AA.

[^0]0108-2701/85/030441-03\$01.50

Introduction. The structure of the title compound has already been determined by X-rays (Brown, 1968), and this work was undertaken principally to confirm the suggested positions of the H atoms which had indicated the novel coexistence of neutral molecules and zwitterions in the same crystal.

Experimental. Large brown triangular crystals approx. $5 \times 6 \times 3 \mathrm{~mm}$ from cold ethanol. Density by flotation in NaI solution. Lattice parameters from 20 high-angle reflexions on a 57.3 mm radius camera. Intensities on a modified Hilger \& Watts diffractometer at UKAEA, Harwell, 1207 reflexions observed out of 1264 counted. Corrections for Lp and absorption, transmission factors between 50 and 100% based on calculated path length. Empirical extinction for seven strong reflexions during refinement. Two standard reflexions, no variation other than that due to changes in neutron beam flux ($<5 \%$).
© 1985 International Union of Crystallography

Table 1. Final atomic parameters and e.s.d.'s

Fig. 1. Unit cell showing atom numbering and arrangement of lines.

Index range $h 0-15, k 0-13, l 0-11 . \theta_{\max }=45^{\circ}$. Structure previously solved from X-ray data. Refinement by least squares on F commencing with X -ray results using $N R C$ programs (Ahmed, Hall, Pippy \& Huber, 1970) on the London Polytechnic's ICL 1905E computer. $\beta_{i j}$ refined for all atoms including H with $\sqrt{ } w=1 / F_{o}$ until shifts were all $<0.25 \sigma$. Max. values in final difference Fourier map $< \pm 0.1 \times 10^{-12} \mathrm{~cm}$. Scattering crossN 9.40 , O $5 \cdot 77$ 1962). $R_{\mathrm{w}}=0.093$.

Table 2. Bond lengths (\AA), bond angles (${ }^{\circ}$) and H -bonding details

Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

Discussion. The final positional and equivalent isotropic thermal parameters are in Table 1,* and bond lengths and interbond angles in Table 2. The numbering of the atoms and packing arrangement of the molecules showing the H-bond system are in Fig. 1. The phenyl rings of the molecules are effectively planar, r.m.s. displacements of the atoms being 0.011 (4) \AA for molecule ' A ' and 0.012 (4) \AA for molecule ' B '. The carboxyl groups are rotated by $+5 \cdot 38$ (5) and $+1.71(5)^{\circ}$ respectively from the planes of their rings. The two phenyl rings make an angle of $+138.85(5)^{\circ}$.

Comparison of the neutron and X-ray results shows some quite appreciable differences, which may be due

[^1]to the lower accuracy of the X-ray intensity data. However, the properties being measured are not the same by the two methods, the centre of gravity of the diffracting electrons by X -rays, and the position of the atomic nucleus by neutrons. Nevertheless, variations of up to $0.07 \AA$ in bond lengths are more than might be expected, and difficult to account for convincingly. A re-determination of the X-ray structure might clarify the discrepancies.

References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1970). $N R C$ crystallographic programs for the IBM/360 system. National Research Council, Ottawa, Canada.
Brown, C. J. (1968). Proc. R. Soc. London Ser. A, 302, 185-199.
International Tables for X-ray Crystallography (1962). Vol. III, p. 229. Birmingham: K ynoch Press. (Present distributor D. Reidel, Dordrecht.)

Acta Cryst. (1985). C41, 443-446

Refinement of 4-Methyl-5-sulfosalicylic Acid Tetrahydrate, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{6} \mathrm{~S} . \mathbf{4 H}_{2} \mathrm{O}^{*}$

By Torbjörn Gustafsson
Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

(Received 16 January 1984; accepted 9 October 1984)

Abstract

M_{r}=304 \cdot 27\), monoclinic, $P 2_{1} / c, \quad a=$ 7.425 (1),$\quad b=25.353$ (3),$\quad c=8.291$ (2) $\AA, \quad \beta=$ $118.09(1)^{\circ}, \quad V=1377(1) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.467(1) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $0.255 \mathrm{~mm}^{-1}, F(000)=640, T=295 \mathrm{~K}$. Refinement based on 2860 reflexions gave a final $w R\left(F^{2}\right)$ value of 0.074 . The molecular structure can best be formulated as the diaquaoxonium salt $\mathrm{H}_{7} \mathrm{O}_{3}^{+} . \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{2^{-}}$ $\mathrm{COOH}(\mathrm{OH}) \mathrm{SO}_{3}^{-} . \mathrm{H}_{2} \mathrm{O}$. The salicylic acid molecules are linked by hydrogen bonds via the $\mathrm{H}_{2} \mathrm{O}$ molecule and the disordered $\mathrm{H}_{7} \mathrm{O}_{3}^{+}$complex.

Introduction. A large number of papers dealing with the geometry of water-proton complexes have been published. The different types of complexes occurring in such systems were identified by Lundgren (1974) and Lundgren \& Olovsson (1976). Taesler (1981) showed that the type of complex formed in one specific compound is governed mainly by the water/proton ratio and the type of anion.

The structure of 4-methyl-5-sulfosalicylic acid (4,5MSSA) (Vyas, Sakore \& Biswas, 1978) showed some

[^2]0108-2701/85/030443-04\$01.50
unexpected features in the water-proton system, both regarding the nature and the geometry of the complex. They described the molecular structure as $\mathrm{H}_{7} \mathrm{O}_{3}^{+}$. $\mathrm{H}_{3} \mathrm{O}^{+} . \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COO}^{-}$. $(\mathrm{OH}) \mathrm{SO}_{3}^{-}$. One of the internal hydrogen bonds in the $\mathrm{H}_{7} \mathrm{O}_{3}^{+}$ion was 2.40 (3) \AA which is $0 \cdot 1 \AA$ shorter than expected. This could have been caused by an unresolved disorder in the $\mathrm{H}_{7} \mathrm{O}_{3}^{+}$ion. The oxygen-oxygen distances from the $\mathrm{H}_{3} \mathrm{O}^{+}$ion are 2.55 , 2.81 and $3.00(\sigma \sim 0.03) \AA$. The expected mean value is $2.57 \AA$. The structure has been redetermined to clarify these points.

Experimental. Crystals obtained by treating 4methylsalicylic acid with conc. sulfuric acid, followed by recrystallization from aqueous solution; crystal $0.4 \times 0.3 \times 0.1 \mathrm{~mm}$, in glass capillary. CAD-4 diffractometer with graphite-monochromatized Mo Ka radiation. Cell parameters (significantly different from values of Vyas et al.) from 20 reflexions ($16<$ $\theta<19^{\circ}$). 2900 reflexions collected for $\sin \theta / \lambda$ $\leq 0.62 \AA^{-1}, 0 \leq h \leq 9,-31 \leq k \leq 0,-9 \leq l \leq 9,40$ excluded due to overlap. Profiles corrected for background (Lehmann \& Larsen, 1974). Variations in five test reflexions were not significant, $\sigma^{2}\left(I_{o}\right)=\left[\sigma_{c}^{2}+\right.$ (c) 1985 International Union of Crystallography

[^0]: * 2-Aminobenzoic acid, low-temperature form.

[^1]: * Lists of structure factors, anisotropic thermal parameters and mean-planes' details have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39884 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * Hydrogen Bond Studies. 150.

